Smooth convex bodies with proportional projection functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smooth Convex Bodies with Proportional Projection Functions

For a convex body K ⊂ Rn and i ∈ {1, . . . , n− 1}, the function assigning to any i-dimensional subspace L of Rn, the i-dimensional volume of the orthogonal projection of K to L, is called the i-th projection function of K. Let K, K0 ⊂ Rn be smooth convex bodies of class C2 +, and let K0 be centrally symmetric. Excluding two exceptional cases, we prove that K and K0 are homothetic if they have ...

متن کامل

Chasing Convex Bodies and Functions

We consider three related online problems: Online Convex Optimization, Convex Body Chasing, and Lazy Convex Body Chasing. In Online Convex Optimization the input is an online sequence of convex functions over some Euclidean space. In response to a function, the online algorithm can move to any destination point in the Euclidean space. The cost is the total distance moved plus the sum of the fun...

متن کامل

Random Polytopes in Smooth Convex Bodies

Let K<= R be a convex body and choose points xl,x2 xn randomly, independently, and uniformly from K. Then Kn = conv {x, , . . . , *„} is a random polytope that approximates K (as n -») with high probability. Answering a question of Rolf Schneider we determine, up to first order precision, the expectation of vol K -vol Kn when K is a smooth convex body. Moreover, this result is extended to qu...

متن کامل

Periodic Billiard Trajectories in Smooth Convex Bodies

We consider billiard trajectories in a smooth convex body in R and estimate the number of distinct periodic trajectories that make exactly p reflections per period at the boundary of the body. In the case of prime p we obtain the lower bound (d − 2)(p − 1) + 2, which is much better than the previous estimates.

متن کامل

Reconstruction of Convex Bodies from Brightness Functions

Algorithms are given for reconstructing an approximation to an unknown convex body from finitely many values of its brightness function, the function giving the volumes of its projections onto hyperplanes. One of these algorithms constructs a convex polytope with less than a prescribed number of facets, while the others do not restrict the number of facets. Convergence of the polytopes to the b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Israel Journal of Mathematics

سال: 2007

ISSN: 0021-2172,1565-8511

DOI: 10.1007/s11856-007-0049-z